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Introduction

Supersymmetric localization gives a way to compute partition functions and
BPS observables exactly.

Using Coulomb branch localization one has to integrate over the Lie algebra of
the gauge group.

The result often takes the form of an integral over random matrices.

Some matrix models are exactly solvable and one can use techniques from
integrability and 2d CFTs (Virasoro symmetry, W-algebras, etc.).

This general idea is called BPS/CFT correspondence [Nekrasov]
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Introduction

The most famous example is AGT, which relates 4d𝒩 = 2 to 2d Liouville/Toda
CFT [Alday-Gaiotto-Tachikawa][Wyllard]

𝑍inst⏟
Nekrasov instanton function

= ⟨𝐺|𝐺⟩⏟
Gaiotto-Whittaker vector

There is a 5d version that relates𝒩 = 1 gauge theories to 𝑞-Liouville
correlators [Awata-Yamada]

𝑞 is a deformation parameter related to the geometry of the background.
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Introduction

Today we are interested in the 3d version of BPS/CFT correspondence:

• On the gauge theory side we have 3d𝒩 = 2 supersymmetric gauge theory
• On the 𝑞-CFT side we have an highest weight module for 𝑞-Virasoro
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Plan of the talk

• 3d𝒩 = 2 partition functions as matrix integrals

• 𝑞-Virasoro constraints and their solution

• Averages of characters (Macdonald functions)

• Refined Chern-Simons and refined ABJ
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3d Gauge theory

We consider 𝑈(𝑁) Yang-Mills-Chern-Simons theory on 𝐷2 ×𝑞 𝑆1

𝑁 𝑁𝑓

adj

fund

with CS level 𝜅CS and FI parameter 𝜉FI.
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𝐷2 ×𝑞 𝑆1 partition function

Upon localization we have the matrix integral [Beem-Dimofte-Pasquetti]

𝑍 = ∮
𝑁
∏
𝑖=1

d𝑥𝑖
𝑥𝑖

e𝑆classic(𝑥𝑖) ∏
𝑖≠𝑗

(𝑥𝑖/𝑥𝑗; 𝑞)∞
(𝑡𝑥𝑖/𝑥𝑗; 𝑞)∞⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

vector+adjoint

𝑁
∏
𝑖=1

𝑁𝑓

∏
𝑎=1

(𝑞𝑥𝑖𝑢𝑎; 𝑞)∞
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

fundamentals

with:
𝑥𝑖 = gauge variables (𝑖 = 1, … , 𝑁)
𝑢𝑎 = fundamental masses (𝑎 = 1, … , 𝑁𝑓)
𝑡 = adjoint mass
𝑞 = holonomy of 𝐷2 over 𝑆1, (𝑥; 𝑞)∞ ∶= ∏∞

𝑛=0(1 − 𝑞𝑛𝑥)

1/2-BPSWilson loop operators are computed as insertions of characters

⟨Schur𝜆(𝑥𝑖)⟩ = ∮
𝑁
∏
𝑖=1

d𝑥𝑖
𝑥𝑖

Schur𝜆(𝑥𝑖) ⋅ [… ]
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Generating function of Wilson loops

From the matrix model point-of-view it is convenient to collect all Wilson loop
operators into a generating function of times 𝜏 = {𝜏1, 𝜏2, … }

𝑍(𝜏) ∶= ⟨exp (
∞
∑
𝑘=1

𝜏𝑘𝑝𝑘
𝑘 )⟩ Cauchy= ∑

𝜆
⟨Schur𝜆(𝑝)⟩⏟⎵⎵⎵⏟⎵⎵⎵⏟
Wilson loop

⋅Schur𝜆(𝜏), 𝑝𝑘 ∶=
𝑁
∑
𝑖=1

𝑥𝑘𝑖

The Schur functions form a basis of the ring of symmetric functions in 𝑥𝑖,
hence we can use them to expand any other symmetric function.

𝑓(𝑥𝑖) = ∑
𝜆
𝑓𝜆 Schur𝜆(𝑥𝑖)

Computing averages of Schurs by explicit integration is hard!
We want an algebraic procedure independent of the rank 𝑁.
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Ward identities

Relations between correlation functions (i.e. Ward identities) are encoded as
differential/difference equations for 𝑍(𝜏). Solving these equations can be
easier than computing integrals! (𝑁 is just a parameter)

Ward identities for classical matrix models are obtained by inserting total
derivatives in the matrix integral

∫
𝑁
∏
𝑖=1

d𝑥𝑖
𝑁
∑
𝑖=1

𝜕
𝜕𝑥𝑖

[𝑥𝑛+1𝑖 (… )] = 0, 𝑛 ≥ −1

corresponding to the Lie derivative along the vectors∑𝑖 𝑥
𝑛+1
𝑖

𝜕
𝜕𝑥𝑖

which form a
Virasoro algebra. These Ward identities are called Virasoro constraints.
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Example

Consider the integral

𝑍(𝜏) = ∫d𝑥 e−
𝑥2
2 +∑𝑘

𝜏𝑘𝑥
𝑘

𝑘

Insert the total derivative operator 𝜕𝑥[𝑥𝑛+1 … ]

∫d𝑥 𝜕𝑥 [𝑥𝑛+1e−
𝑥2
2 +∑𝑘

𝜏𝑘𝑥
𝑘

𝑘 ] = (𝑛 + 1)⟨𝑥𝑛⟩ − ⟨𝑥𝑛+2⟩ +
∞
∑
𝑘=1

𝜏𝑘⟨𝑥𝑛+𝑘⟩

= [(𝑛 + 1)𝑛 𝜕
𝜕𝜏𝑛

− (𝑛 + 2) 𝜕
𝜕𝜏𝑛+2

+
∞
∑
𝑘=1

𝜏𝑘(𝑛 + 𝑘) 𝜕
𝜕𝜏𝑛+𝑘

]𝑍(𝜏) = 0

Independent from the contour if there are no boundary contributions!
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𝑞-Virasoro constraints

Our matrix model is 𝑞-deformed therefore the Ward identities should also be
𝑞-deformed. The first guess is to substitute the total derivative by a finite
difference operator that depends on 𝑞 and 𝑡 [Mironov-Morozov-Zenkevich],

∮
𝑁
∏
𝑖=1

d𝑥𝑖
𝑥𝑖

𝑁
∑
𝑖=1

(𝑇𝑞,𝑥𝑖 − 1) [𝑥𝑛𝑖 ∏
𝑗≠𝑖

1 − 𝑡𝑥𝑖/𝑥𝑗
1 − 𝑥𝑖/𝑥𝑗

(… )] = 0

where 𝑇𝑞,𝑥𝑖 ∶ 𝑥𝑖 ↦ 𝑞𝑥𝑖 is a shift operator w.r.t. which the 𝑞-Pochhammers are
quasi-periodic

𝑇𝑞,𝑥(𝑥; 𝑞)∞ = 1
(1 − 𝑥)(𝑥; 𝑞)∞

In the limit 𝑞, 𝑡 → 1 we recover the usual derivative.
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𝑞-Virasoro constraints

We want to rewrite the constraints as infinitely many PDEs for 𝑍(𝜏).

This might fail for two reasons:
• the 𝑛 = −1 constraint contains terms proportional to∑𝑖⟨1/𝑥𝑖⟩. We need to
set the coefficient to zero:

⇒ 𝜉FI =
log 𝑡
log 𝑞(𝑁 − 1) + 1

• the CS action contributes logarithmic terms in 𝑥𝑖. We choose vanishing
level

𝜅CS = 0
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The 𝑞-Virasoro module

We can interpret these constraint equations algebraically as the (bosonized)
action of 𝑞-Virasoro generators on a highest weight state

𝑇𝑛|𝑍⟩ = 0, 𝑛 ≥ −1

with 𝑞-Virasoro current 𝑇(𝑧) = ∑𝑛∈ℤ 𝑇𝑛𝑧𝑛 realized as a difference operator

𝑇(𝑧) = (𝑞/𝑡)
1
2 exp (−

∞
∑
𝑘=1

𝑧−𝑘 (1 − 𝑞𝑘)
(1 + 𝑞𝑘𝑡−𝑘)

𝜏𝑘
𝑘 )exp (

∞
∑
𝑘=1

𝑧𝑘(1 − 𝑡−𝑘) 𝜕
𝜕𝜏𝑘

) 𝑡𝑁+

+(𝑞/𝑡)−
1
2

𝑁𝑓

∏
𝑎=1

(1 − 𝑞𝑢𝑎/𝑧)exp (
∞
∑
𝑘=1

𝑧−𝑘 (1 − 𝑞𝑘)𝑞𝑘𝑡−𝑘
(1 + 𝑞𝑘𝑡−𝑘)

𝜏𝑘
𝑘 )exp (

∞
∑
𝑘=1

𝑧𝑘 (1 − 𝑡𝑘)
𝑞𝑘

𝜕
𝜕𝜏𝑘

) 𝑡−𝑁
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𝑞-Virasoro algebra

𝑞-Virasoro is an associative deformation of Virasoro inspired by work on
quantum groups [Frenkel-Reshetikhin] and quantum integrable models
[Shiraishi-Kubo-Awata-Odake].

It is generated by 𝑇𝑛∈ℤ with relations

[𝑇𝑛, 𝑇𝑚] = −
∞
∑
𝑙=1

𝑓𝑙(𝑇𝑛−𝑙𝑇𝑚+𝑙 − 𝑇𝑚−𝑙𝑇𝑛+𝑙) −
(1 − 𝑞)(1 − 𝑡−1)
(1 − 𝑞𝑡−1) (𝑞𝑛𝑡−𝑛 − 𝑞−𝑛𝑡𝑛)𝛿𝑛+𝑚,0

and coefficients 𝑓𝑙 given by

𝑓(𝑧) =
∞
∑
𝑙=0

𝑓𝑙𝑧𝑙 = exp (
∞
∑
𝑘=1

(1 − 𝑞𝑘)(1 − 𝑡−𝑘)
(1 + 𝑞𝑘𝑡−𝑘)

𝑧𝑘
𝑘 )
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Solving the constraints

Expanding 𝑍(𝜏) on the basis of monomials in ℂ[[𝜏1, 𝜏2, … ]] we find linear
relations between the correlators ⟨𝑝𝜆⟩. These relations are upper triangular
w.r.t. the some ordering on the partitions 𝜆 and we can try to solve them
recursively.

For 𝑁𝑓 = 1, 2 the kernel is 1-dimensional and the solution is unique up to
normalization.

For 𝑁𝑓 ≥ 3 the kernel is∞-dimensional and more initial data is needed.

Example: For 𝑁𝑓 = 3 we cannot solve for correlators of the form ⟨𝑝𝑛1 ⟩.
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Semi-classical limit

How do we recover usual Virasoro?

𝑞 = eℏ 𝑡 = 𝑞𝛽 ℏ → 0

The limit is ill-defined if the masses 𝑢𝑎 are kept constant.

⇒ ∑
𝑎
𝑢𝑘𝑎 = (𝑞−𝑘 − 1)𝑔𝑘, 𝑘 = 1, … , 𝑁𝑓

After re-parametrization of the masses the limit exists and it is an Hermitian
matrix model.

{𝑞-Virasoro constr. 𝑇𝑛}
ℏ→0−−−→ {Virasoro constr. 𝐿𝑛}
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Semi-classical limit

Around ℏ = 0 the partition function is

𝑍𝑞,𝑡 = ∫
𝑁
∏
𝑖=1

d𝑥𝑖∏
𝑘≠𝑙

(𝑥𝑘 − 𝑥𝑙)𝛽
𝑁
∏
𝑖=1

e−𝑉(𝑥𝑖) + 𝑂(ℏ)

with polynomial potential

𝑉(𝑥) = 𝑔1𝑥 +
1
2𝑔2𝑥

2 +⋯+ 1
𝑁𝑓

𝑔𝑁𝑓𝑥
𝑁𝑓

• 𝑁𝑓 = 1 is Wishart-Laguerre
• 𝑁𝑓 = 2 is Gaussian
• 𝑁𝑓 ≥ 3 is generalization of Airy function (Dijkgraaf-Vafa phases)
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Averages of characters
Schur polynomials are classical characters of 𝑈(𝑁). Their averages in the
Hermitian matrix model satisfy the super-integrability property

⟨character⟩ ∼ character

[Morozov-Popolitov-Shakirov] conjectured that in (𝑞, 𝑡)-deformed matrix models
super-integrability holds for Macdonald polynomials 𝑃𝜆(𝑥𝑖; 𝑞, 𝑡).

We propose the following formula for 𝑁𝑓 = 2 [LC-Lodin-Zabzine]

⟨𝑃𝜆(𝑥𝑖)⟩
⟨1⟩ =

𝑃𝜆 (𝑝𝑘 =
(𝑢−𝑘1 +𝑢−𝑘2 )

1−𝑡𝑘
)

𝑃𝜆 (𝑝𝑘 =
1

1−𝑡𝑘
)

𝑃𝜆 (𝑝𝑘 =
1 − 𝑡𝑘𝑁
1 − 𝑡𝑘 )

⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
quantum dimension of 𝑅𝜆

One can plug this formula in the character expansion of 𝑍(𝜏) to get a
complete solution of the model.
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3-Sphere partition function

The 3-sphere decomposes as the union of 2 solid tori

𝑆3 ≃ 𝐷2 ×𝑞1 𝑆1 ⊔ 𝑆1 ×𝑞2 𝐷2 𝑞1 = e
2𝜋i𝜔2𝜔1 , 𝑞2 = e

2𝜋i𝜔1𝜔2

The partition function is computed by localization [Hama-Hosomichi-Lee]

𝑍𝑆3 = ∫
𝑁
∏
𝑖=1

d𝑋𝑖 e𝑆classic(𝑋𝑖)⏟⎵⎵⏟⎵⎵⏟
CS+FI

∏
𝑖≠𝑗

𝑆2(𝑋𝑖 − 𝑋𝑗|𝜔)
𝑆2(𝑋𝑖 − 𝑋𝑗 +𝑀|𝜔)

𝑁
∏
𝑖=1

𝑁𝑓

∏
𝑎=1

𝑆2(𝜔1 + 𝜔2 + 𝑋𝑖 +𝑚𝑎|𝜔)

where

𝑆2(𝑋𝑖|𝜔) ≈ (𝑥𝑖,1; 𝑞1)∞(𝑥𝑖,2; 𝑞2)∞
𝜔1,2 = squashing
𝑀 = adjoint mass
𝑚𝑎 = fundamental masses
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Modular double

The 𝑆3 generating function factorizes as a product [LC-Lodin-Popolitov-Zabzine]

𝑍𝑆3(𝜏, ̃𝜏) ≃ 𝑍𝑞1,𝑡1(𝜏) ⊗ 𝑍𝑞2,𝑡2( ̃𝜏)

There are two commuting copies of 𝑞-Virasoro, giving the structure of a
modular double [Nedelin-Nieri-Zabzine].

Analytically more subtle: need to impose 𝜅CS = 𝑁𝑓/2 together with balancing
condition (from 𝑇−1 constraint) [LC-Lodin-Zabzine]

𝜉FI = 𝜔 +𝑀(𝑁 − 1) − 𝜔
2
𝑁𝑓
2 −

𝑁𝑓

∑
𝑘=1

𝑚𝑘
2
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Refined Chern–Simons

There exist a Macdonald deformation of the modular matrices 𝑆 and 𝑇 [Kirillov]
which can be used to define a refinement of pure CS partition function
[Aganagic-Shakirov]

𝑍rCS = ⟨0|𝑇𝑆𝑇|0⟩ = ∫∏
𝑖≠𝑗

(𝑥𝑖/𝑥𝑗; 𝑞)∞
(𝑡𝑥𝑖/𝑥𝑗; 𝑞)∞

𝑁
∏
𝑖=1

e
− log2 𝑥𝑖

2 log𝑞 d𝑥𝑖

𝑞 = e
2𝜋i

𝜅+𝛽𝑁 𝑡 = e
2𝜋i𝛽
𝜅+𝛽𝑁

Wilson loops observables are given by Macdonald polynomials

𝑊 𝜆(○) = ⟨𝑅𝜆|𝑇𝑆𝑇|0⟩ = ⟨𝑃𝜆(𝑥𝑖; 𝑞, 𝑡)⟩ (unknot superpolynomial)

In the 𝛽 → 1 limit we obtain unrefined CS theory
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Refined Chern–Simons

Same measure as 𝐷2 × 𝑆1 but different potential! Can we find 𝑞-Virasoro?

Observation: 𝑇𝑞,𝑥e
− log2 𝑥

2 log𝑞 = (𝑞−
1
2𝑥−1)e−

log2 𝑥
2 log𝑞

We can use the same difference operator to derive Ward identities for the
generating function of correlators. The constraints take the form

𝑇𝑛 𝑍rCS(𝜏) = 0

𝑍rCS(𝜏) is an highest weight for 𝑞-Virasoro!
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Solution to 𝑞-Virasoro constraints

The constraints induce recursion relations on the coefficients of the
generating function 𝑍rCS(𝜏). We can solve them explicitly to find the
super-integrability formula

⟨𝑃𝜆(𝑥𝑖)⟩
⟨1⟩ =

𝑃𝜆 (𝑝𝑘 = − (−𝑞1/2)
𝑘

1−𝑡𝑘
)

𝑃𝜆 (𝑝𝑘 =
1

1−𝑡𝑘
)

𝑃𝜆 (𝑝𝑘 =
1 − 𝑡𝑘𝑁
1 − 𝑡𝑘 )

which matches an explicit integral evaluation formula by [Cherednik].
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Refined ABJ

The matrix model of ABJ theory can also be refined. We can think of it as the
supergroup 𝑈(𝑁|𝑀) version of rCS [Nieri-Pan-Zabzine] [Kimura-Nieri]

𝑍rABJ𝑁,𝑀 = ∫
∏𝑖≠𝑗

(𝑥𝑖/𝑥𝑗 ;𝑞)∞
(𝑡𝑥𝑖/𝑥𝑗 ;𝑞)∞

∏𝑎≠𝑏
(𝑦𝑎/𝑦𝑏;𝑡−1)∞

(𝑞−1𝑦𝑎/𝑦𝑏;𝑡−1)∞

∏𝑖,𝑎(1 − √𝑡/𝑞 𝑥𝑖/𝑦𝑎)(1 − √𝑡/𝑞 𝑦𝑎/𝑥𝑖)

𝑁
∏
𝑖=1

e
− log2 𝑥𝑖

2 log𝑞 d𝑥𝑖
𝑀
∏
𝑎=1

e
− log2 𝑦𝑎

2 log 𝑡−1 d𝑦𝑎

Wilson loops are given by Super-Macdonald polynomials [Sergeev-Veselov]

𝑊 𝜆(○) = ⟨𝑆𝑃𝜆(𝑥𝑖, 𝑦𝑎; 𝑞, 𝑡)⟩

The difference operator is a generalization of Macdonald-Ruijsenaars

𝑥𝑖 ↦ 𝑞𝑥𝑖 𝑦𝑎 ↦ 𝑡−1𝑦𝑎

The constraints take the same form as rCS for 𝑁eff = 𝑁 − log𝑞
log 𝑡

𝑀!
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Quantum 𝑞-geometric Langlands

The 𝑞-Virasoro algebra has an outer automorphism that acts on the
parameters as

𝑞 ↔ 𝑡−1 𝛽 ↦ 1
𝛽 𝑁 ↦ −𝛽𝑁

The normalized generating function of rCS is invariant under Langlands.

For physical values of parameters 𝑞 = e
2𝜋i

𝜅+𝛽𝑁 and 𝑡 = e
2𝜋i𝛽
𝜅+𝛽𝑁 (root of unity)

𝑞𝜅𝑡𝑁 = 1

Langlands duality reduces to 3d Seiberg duality or equivalently level/rank

𝑈(𝑁)𝜅 ↔ 𝑈(𝑘)𝑁
𝑊 𝜆(○) ↔ 𝑊 𝜆′(○)
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Summary and Outlook

• Complete solution of 𝑞-Virasoro for 𝑁𝑓 = 1, 2 on 𝐷2 × 𝑆1 and 𝑆3.
(i.e. exact computation of all Wilson loops at finite 𝑁)

• Semi-classical expansion around Hermitian matrix model (conformal
limit).

• Solution of rCS and rABJ matrix models.

To do:

• Beyond the unknot. Toric knots invariants ?
• Use 𝑞-Virasoro to solve 5d Nekrasov [Kimura-Pestun] [Nieri-Pan-Zabzine]

• Elliptic Virasoro constraints and elliptic CS [Nieri] [vanDiejen-Görbe]

• Cohomological limit, 𝜖-Virasoro and 2d𝒩 = (2, 2) [Nieri-Zenkevich]
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